Doubly Stochastic Primal-Dual Coordinate Method for Bilinear Saddle-Point Problem
نویسندگان
چکیده
We propose a doubly stochastic primal-dual coordinate optimization algorithm for empirical risk minimization, which can be formulated as a bilinear saddle-point problem. In each iteration, our method randomly samples a block of coordinates of the primal and dual solutions to update. The linear convergence of our method could be established in terms of 1) the distance from the current iterate to the optimal solution and 2) the primal-dual objective gap. We show that the proposed method has a lower overall complexity than existing coordinate methods when either the data matrix has a factorized structure or the proximal mapping on each block is computationally expensive, e.g., involving an eigenvalue decomposition. The efficiency of the proposed method is confirmed by empirical studies on several real applications, such as the multi-task large margin nearest neighbor problem.
منابع مشابه
Stochastic Parallel Block Coordinate Descent for Large-Scale Saddle Point Problems
We consider convex-concave saddle point problems with a separable structure and non-strongly convex functions. We propose an efficient stochastic block coordinate descent method using adaptive primal-dual updates, which enables flexible parallel optimization for large-scale problems. Our method shares the efficiency and flexibility of block coordinate descent methods with the simplicity of prim...
متن کاملDoubly Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization with Factorized Data
We proposed a doubly stochastic primal-dual coordinate optimization algorithm for regularized empirical risk minimization that can be formulated as a saddlepoint problem. Different from existing coordinate methods, the proposed method randomly samples both primal and dual coordinates to update solutions, which is a desirable property when applied to data with both a high dimension and a large s...
متن کاملStochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization
We consider a generic convex optimization problem associated with regularized empirical risk minimization of linear predictors. The problem structure allows us to reformulate it as a convex-concave saddle point problem. We propose a stochastic primal-dual coordinate method, which alternates between maximizing over one (or more) randomly chosen dual variable and minimizing over the primal variab...
متن کاملAdaptive Stochastic Primal-Dual Coordinate Descent for Separable Saddle Point Problems
We consider a generic convex-concave saddle point problem with a separable structure, a form that covers a wide-ranged machine learning applications. Under this problem structure, we follow the framework of primal-dual updates for saddle point problems, and incorporate stochastic block coordinate descent with adaptive stepsizes into this framework. We theoretically show that our proposal of ada...
متن کاملRandomized Primal-Dual Proximal Block Coordinate Updates
In this paper we propose a randomized primal-dual proximal block coordinate updatingframework for a general multi-block convex optimization model with coupled objective functionand linear constraints. Assuming mere convexity, we establish its O(1/t) convergence rate interms of the objective value and feasibility measure. The framework includes several existingalgorithms as s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015